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1. INTRODUCTION

1.1. Biology and mathematics: a continual interaction

In mathematics and science it is nowadays almost compulsory to follow the
narrowing road of specialization. In a period in which the would-be universal
scientist is forced to read night and day (and even while doing so is confronted
with an ever increasing back-log), intense co-operation between specialists in
different fields seems to be a designated way to escape from the various pitfalls
(the Scylla of narrowmindedness and the Charybdis of unproductivity). This
negative argument in favour of interdisciplinary projects is easily supplemented
with more positive ones, such as: co-operation between people having different
backgrounds increases the chances of discovering unexpected but enlightening
connections and, last but not least, may enhance working pleasure consider-
ably.

The interplay of mathematics and the sciences is not an instantaneous one-
way process but rather a process of repeated cross-fertilization. Foggy notions
and questions about real world phenomena have to be clarified when one tries
to reformulate them in terms of a mathematical model. The incorporation of
specific models (and the problems they pose) within a mathematical framework
of some generality serves as a test for the mathematical structure itself and
may lead to the creation of a new, extended and improved structure based on
a deeper understanding. The outcome of a mathematical analysis may trigger
renewed investigations, with different eyes, of the natural phenomena which
one is trying to describe and understand.

In this lecture I intend to illustrate the general statements above by means
of a few selected examples. These examples have in common that they are con-
cerned with dynamics, the time-evolution of states, in the context of biological
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(more precisely, population dynamical and epidemiological) models. This
characteristic provides a first justification and interpretation of the title. A
second interpretation derives from the fact that the interaction between biology
and mathematics is itself a dynamical process. I will try to describe the exam-
ples in such a way that at least part of this process becomes visible. 1 will
stress the mutual influence by paying special attention to the way things have
developed to what they are now (and by speculating a little bit about future
developments). Of course there are many cases in which by now well-known
mathematical techniques are used to answer by now well-defined biological
questions but, however useful that may be, this is not the kind of applications
of mathematics in biology I want to describe. Instead I will concentrate on
situations in which the mathematical and the biological aspects coevolve
towards a state in which they are adapted to each other at the benefit of both.
Inevitably the composition of the audience and my own background create
some bias to the effect that the mathematical aspects will be overemphasized.

Many interesting and important recent results and developments of dynami-
cal systems theory are not touched upon in this lecture (no chaos, for
instance). Most of the work (even of that with a biological flavour) in which
the Department of Applied Mathematics of the Centre for Mathematics and
Computer Science (and its predecessor, the Mathematical Centre) was involved
during the last 40 years, will not be described. I concentrate on two problems
which, I feel, are well suited to illustrate some general features of the coevolu-
tion of mathematics and science, which are more or less representative of the
work done at the Department of Applied Mathematics, and which are interest-
ing by themselves. The solution of the first problem requires hard nonlinear
analysis (up to six or seven constants have to be chosen suitably to get the
estimates right). The solution of the second problem is based on soft linear
functional analysis (an abstract framework has to be defined to make things
easy and straightforward).

Chapter 2 deals with the first problem, the description and analysis of the
geographical spread of an infectious disease. In Section 1.2 I give a preview of
the main questions and answers while emphasizing the conceptual aspects and
neglecting the technical ones.

Finding an appropriate mathematical framework for models of physiologi-
cally structured populations is the main issue of Chapter 3. Although biologi-
cally not the most interesting case, I concentrate on age structured populations
for didactic reasons (to understand the equations of age dependent population
dynamics requires comparatively little energy of the uninitiated reader; see
[64,51] for a systematic exposition of models and equations in the general case
and for a snapshot of the state-of-the-art of the rapidly growing mathematical

theory). An introductory preview of the basic ideas and problems is given in
Section 1.3.
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1.2. The speed of propagation and intermediate asymptotics

In Chapter 2 we consider a situation with very simple dynamics. A steady
state, called 0, is unstable and any biologically realizable perturbation, no
matter how small, gives rise to a sequence of events (an orbit) which ends in a
stable steady state, called co. Real world examples range from fires (combus-
tion theory), over the development of an infectious disease to the taking over
by a favourable mutant gene. Despite the dynamical simplicity one can ask a
difficult question: how fast will the transition 0 —oo effectively take place. The
sting is in the adverb ‘effectively’, which makes the answer ‘It will take an
infinite time’ inappropriate. The mathematical theory of dynamical systems
centers around the asymptotic behaviour of trajectories for large time and, in
particular, the classification of limit sets. Transients are the Cinderellas which
do the hard and dirty work, but which are hardly ever regarded as interesting
by themselves.

Our question can be rephrased in terms of the physical notion of ‘time scale’
(see, for instance, LIN, SEGEL [47]),but in a nonlinear problem several time
scales can be involved (in the present case one has at least three phases: an ini-
tial phase governed by the linearization near 0, an intermediate phase governed
by the nonlinearity and a final phase governed by the linearization near o).
So do we have to take recourse to numerical calculations, taking for granted
the inherent imperfection that variation of parameters may lead to large
amounts of numbers from which it is hard to deduce the essential information?

Let us first indulge in our basic question, while concentrating, for the sake
of exposition, on the case of an infectious disease affecting some agricultural
crop. A farmer finding his wheat-field invaded by a certain rust wants to esti-
mate how much of the field will be unaffected at harvest time (note that the
upper limit for the time window accentuates that the problem does not fit into
the standard large time asymptotic realm). It appears that the problem has a
spatial dimension too. At first sight this only seems to complicate the matter
but, as we will see, it actually enables us to bring asymptotics back into the
play.

Assume, as an ‘idealization’, that the field extends infinitely far in all direc-
tions. Then we can look for travelling plane waves, a special kind of self-
similar solutions. The rationale for our interest in these special solutions lies in
the idea that an observer moving with the right speed might be able to study
the transients. Or, in other words, in a moving coordinate system the transients
may look like ‘frozen’ spatial transitions.

A robust conclusion obtains: travelling plane waves exist for all speeds
¢=c, for some co and this minimal wave speed ¢ is the asymptotic speed of
propagation of disturbances in a sense which is on the one hand excellently
adapted to the biological connotation and, on the other hand, mathematically
precise. By ‘robust’ we mean that the conclusion is valid for a large class of
models which are quite different from a mathematical point of view, yet
describe biologically similar phenomena. The equations corresponding to these
models take divergent forms as is manifest from the adjectives: reaction-
diffusion, integro-differential, integro-difference, Volterra-Hammerstein.
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Comparison theorems and the construction of suitable lower- and upper-
solutions are indispensable tools for their analysis.

It is an experimental fact, derived from simulation studies, that the quantity
¢o is highly relevant for a description of propagation in finite fields during
finite time intervals. In the interesting book Similarity, Self-Similarity and
Intermediate Asymptotics [1] G.I. BARENBLATT writes:

“Self-similar solutions also describe the ‘intermediate asymptotic’
behaviour of solutions of wider classes of problems in the range
where these solutions no longer depend on the details of the initial
and/or boundary conditions, yet the system is still far from being
in a limiting state”

(and he stresses the importance of self-similar solutions as an aid in interpret-
ing large amounts of data obtained from computer simulations). Unfortunately
it appears to be rather hard to prove (or even formulate) precise mathematical
statements about intermediate asymptotics (and I cannot resist the temptation
of writing a commonplace: this subject deserves to be more widely and deeply
studied!). However, even though the theoretical basis is perhaps not as solid as
it should be, we arrive at a clear-cut conclusion: the transition 0 —oo takes
place with a well-defined speed cy.

Once such a strong result is available, it becomes worth-while to embark
upon a more detailed modelling exercise dealing with such questions as: how
do the ingredients of the model relate to measurable biological quantities?
Moreover, the computation of ¢y from the ingredients is a point of concern
and, finally, the prediction of ¢y found from the model should be tested
against the speed found in the field (measurements usually indeed display a
constant rate of expansion!).

1.3. About states and state-spaces

In order to give a realistic description of disease propagation it does not suffice
to classify an individual plant as either healthy or infected. The production of
infectious agents (say spores) is determined by the state of the particular plant,
where ‘state’ should incorporate everything relevant for determining the spore
production now and in the future, given the course of the environment (the
weather, for instance). This is not an unusual situation. Individuals are not
really the ‘atoms’ of population dynamics, simply because they differ in traits
as age, size, energy reserves etc., which are of great influence on their popula-
tion dynamical behaviour (giving birth, dying, consumption of limiting
nutrients, occupying territoria etc.). An obvious idea is to introduce a (finite
dimensional) individual state space Q and to conceive of the population as a
frequency distribution (sometimes called the population density) n over 2. The
dynamics of the individuals (their ageing, growing, metabolism, etc.) are
described by ordinary differential equations and simple bookkeeping argu-
ments at the population level lead to a first order partial differential equation
for n. These partial differential equations may exhibit several unusual features:
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birth terms are non-local and the support of n may concentrate on a lower
dimensional manifold in Q.

A convenient conceptual framework for the description of dynamical
phenomena can be build from the notions of state, next-state operators and
generator (and, in addition, inpur and output but these are not essential for our
purposes now). In the present context the notion of state figures at two levels.
At the individual level the state corresponds to the finitely many characteris-
tics, say summarized in a vector x, which uniquely fix the population dynami-
cal ‘status’ of an individual. The variable x takes values in €, a subset of R¥.
At the population level the state is given by the frequency distribution » and
we have still to specify to which space X of functions on @ n(t) is assumed to
belong.

Operators 7(z,¢y) map the population state at ¢y onto the population state
at time ¢, thereby providing a complete description of the dynamics. Even
though the collection of operators T'(1,¢¢) is just a mathematical incarnation of
its real world counterpart it is usually impossible to give a direct mathematical
definition. They have a clear and well-defined interpretation but, as a rule, it is
impossible to calculate explicitly how they act on the basis of nothing but
modelling assumptions. Instead we usually first derive the (infinitesimal) gen-
erator A(ty) by calculating changes of the state in small time intervals h up to
first order in & and, after dividing by 4, taking the limit 2 }0. Hence A(¢t,) is, at
least formally, the derivative of T(r,7y) with respect to ¢ evaluated at r=t,.
The advantage of the ‘infinitesimal’ formulation is that the different contribu-
tions to the dynamics from the various ‘forces’ are uncoupled in the limit 4|0
whereas, in contrast, they are strongly intermingled in finite time intervals (an
individual which has died cannot give birth!). The ‘local’ differential equation
dn

dr
the ‘global’ solution operators T(1,15). This is, of course, one of the main rea-
sons for the omnipresence of differential equations in (applied) mathematics.

Part of the bookkeeping arguments alluded to above are formal 4|0 calcula-

A()n is much easier derived from a verbal description of a model then

tions which yield the equation -£=A(t)n in the form of a partial differential

equation supplemented with appropriate boundary conditions. So here A(r) is
a differential (or integro-differential or differential-difference) operator acting
on functions of the variable x. In this derivation we don’t bother about the
precise definition of the population state space X or about the sense of conver-
gence as /0. In the partial differential equation formulation we think of n as
a function of two variables, n(t,x)=n(t)(x), and neither X nor the sense in
which the equation should hold is specified during a derivation by formal cal-
culus.

Partly for the sake of exposition and partly because more general population
models are not elaborated in detail yet, we assume from now on that the
environmental circumstances are constant in time. So experiments starting
from the same initial state are identical, whether we perform them now or two
weeks from now. Time translations don’t matter then and, slightly abusing
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notation, we may write T(2,10)=T(t —1o) and assume that A4 is independent of
. Moreover, let us assume that density dependence may be neglected such
that, as a consequence, all our operators will be linear.

In any book on the functional analytic theory of semigroups (HILLE and
PHILLIPS [42], BUuTZER and BERENS [14], DavIEs [18], PAZY [56], GOLDSTEIN
[33], vAN CASTEREN [15], NAGEL [53]) one finds the following definitions. Let X
be a Banach space with norm lIll, and let for each :=0, T(¢) be a bounded
linear operator on X. Assume that:

(i) T(0)=1I, where I denotes the identity operator on X,
i)y T@+s)=T@)T(s), 1,s=0,
(iii) lilr(x)lIIT(t)¢——¢H=0, for all e X.

1

Then {T(¢)} is called a strongly continuous semigroup (of bounded linear opera-
tors) on X.

The prefix ‘semi’ reflects the restriction 1=0. Note that (i) and (ii) yield a
mathematical formulation of intuitive ideas about next-state operators. The
condition (iii) is, as one can easily verify by exploiting (i) and (ii), equivalent
with the condition that orbits are continuous, ie. for each ¢€X the map
toT(1)¢ is continuous from R, to X.

The infinitesimal generator 4 of {7(¢)} is the, in general unbounded, opera-
tor defined by

—limd -
A¢_l,,1{f)‘h(T(h)¢ )

whenever the limit exists. So D(4), the domain of 4, is by definition the set of
¢€ X for which this limit exists.

Although we use the same symbols and terminology, we are at the moment
dealing with two different ‘worlds’. In one lives a formally derived partial
differential equation, in the other an unspecified semigroup and generator act-
ing on an unspecified Banach space X. It seems conceivable to make the con-
nection by removing the largely conceptual difference between n(z,x), a func-
tion of two variables, and n(r)(x), a function of 7 with values in a space X of
functions of x. But is this worth the effort? Does an abstract approach make
life easy? A controversial question to which different people may give opposite
answers.

One of the high-lights of semigroup theory is the Theorem of Hille and
Yosida which gives a precise characterization of the generators of strongly con-
tinuous semigroups. So if we make a choice for the function space X and
define, on the basis of the appearance of the partial differential equation, the
operator A, in particular its domain, we may try to verify the necessary and
sufficient conditions of the Hille-Yosida Theorem. If we are successful this
yields an existence and uniqueness result for solutions of the time evolution
problem. So here we first reinterpret our partial differential equation as an

equation of the form %T-An, then associate with 4 the semigroup T(z) and

finally define n(z,x,6)=(T(t)p)(x), where ¢(x)=n(0,x) is the initial condition
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at 1 =0 which is (assumed to be) given. This is a usual procedure for dealing
with parabolic equations, where 4 is an elliptic operator for which a large
body of results about spectrum and resolvent estimates, the key ingredients of
a verification of the Hille-Yosida conditions, is available (see HENRY [39] or
FRIEDMAN [32]).

When dealing with physiologically structured population models (or with
delay equations, i.e. differential equations which do incorporate some influence
of the past on the future, see HALE [36]) we proceed differently. The solution
n(t,x,¢) of the initial value problem is rather easily defined constructively (see
section 3.1 for an example). Next we define T(r)p=n(z, -,¢) and calculate from
this definition the generator 4. So here we obtain only a posteriori a rein-
terpretation of the partial differential equation as the abstract ordinary

differential equation % =An and the profit is far from self-evident.

In the linear case a basic advantage of the semigroup approach derives from
available results concerning the connection between the spectrum of 4 and the
asymptotic behaviour of T(¢) (some of the more recent results in this area were
motivated by models from age dependent population dynamics! See PRUSS
[57-59] and WEBB [69]). In the case of ordinary differential equations in R*
this is just the connection between the eigenvalues of the matrix 4 and the
asymptotic behaviour of solutions. But in an infinite dimensional situation
there may exist spectral values which are not eigenvalues and a careful analysis
is needed. I don’t review this interesting theory here, but confine myself to
remarking that it serves as a mayor motive for putting specific evolution prob-
lems in the semigroup framework. The very recent and highly interesting lec-
ture notes One-Parameter Semigroups of Positive Operators [53], edited by R.
NAGEL, gives a wealth of results culminating in an extensive study of the spe-
cial (but rather important also from an ‘applied’ point of view) case of positive
operators. Also see HEIYMANS [40,41]. DIEKMANN, METZ, KOOIMAN and HEL-
MANS [25] or WEBB [69] for an exposition directed towards applications in
population dynamics.

Bypassing a vast literature on the generation of nonlinear semigroups (e.g.
BARBU [6], BREzIs [12], CRANDALL [17]), we recall that in local stability and
bifurcation theory one deals with perturbations of linear problems. Many
results in this area can be obtained from simple estimates and the implicit
function theorem once has formulated the appropriate variant of the variation-
of-constants formula

T(1)=To(t)+ [To(t —7)BT(r)dr.
0

Here T(r) is a semigroup generated by 4, B is a bounded perturbation and
T(t) is the semigroup generated by 4o+ B. In stability and bifurcation prob-
lems B is small in an appropriate sense but not necessarily linear. The
variation-of-constants formula enables us to estimate how the smallness of B
affects the solution operators 7'(¢) and to prove the principle of linearized sta-
bility, the center manifold theorem etc. in completely the same way as one
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does in the case of ordinary differential equations. As a side-remark we men-
tion that an appropriate form of relative boundedness of B is sufficient for this
purpose (see, for instance, HENRY [39)).

We conclude that a basic advantage of the semigroup approach is that one
can prove many results once and for all in the general setting such that subse-
quently one can draw conclusions about solutions of specific evolution equa-
tions by showing that the general results apply.

Following this approach in the case of physiologically structured population
models (and in the case of delay equations as well) we run into some disap-
pointment: the general abstract framework does not fit as good as one feels it
ought to fit! The problem that arises is explained in Section 3.2 by means of
an example. Rather than concluding that the ‘basic advantage’ is not so big
after all and sitting down under it, we take up the challenge, analyse the
difficulty and find that the equations do fit excellently within a somewhat
extended general framework. In retrospect the extension is quite natural from
a mathematical point of view as well and one can easily explain the framework
in mathematical terms, without any reference to models from population
dynamics or any other application. We emphasize, however, that the tension
between general theory and specific applications (as exemplified in feelings of
irritation and frustation: why are these damned problems so resistant against
an abstract approach which intends to make them easy instead of difficult!?)
serves as a catalyser for finding the key ideas.

The work on physiologically structured population models has only just
begun and much remains to be done. At the end of the paper I will stress the
need for young talented people to carry out the program.

2. THE GEOGRAPHICAL SPREAD OF AN INFECTIOUS DISEASE

2.1. A mathematical prototype: linear diffusion
In this section I will present some rather simple explicit calculations which, I

hope, illuminate the main concepts and results. The simplest differential equa-
tion

u=ku 2.1)

states that the rate of production of ‘particles’ (say genes or sporcs) is propor-
tional, with constant k, to their density w. Assume k>0. Then #=0 is an
unstable steady state and, in some sense, u= oo is a stable steady state. Next
suppose our particles are subject to random spatial migration in a plane and
replace (2.1) by the diffusion equation

du .
% =DAu+ku 2.2)
where
2 2
Au= d°u , Fu

ax?  3x3
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and where the diffusion coefficient D is a measure for the variance of the
motion. The fundamental solution
2 2
PR W A S N - 23
’ 4Dt 47Dt (2:3)
describes what happens when we start at =0 with one particle located at

x=0. From this explicit expression it follows immediately that for any fixed
0

U= 0 if |x[P< (4Dk — e (2.4)

1o {0 if |x|*> (4Dk +e)r?
So, asymptotically for z—co, nothing has happenend yet outside growing cir-
cles of radius 1 V4Dk +e¢ and everything has happened already inside growing
circles of radius 1 V4Dk —e¢. Therefore we call

co=2VDk 2.5)

the asymptotic speed of propagation of disturbances (the need to provide ¢ with
an index will become evident soon).
Two questions arise:
(i) can we obtain more information about the structure of the transition
0 —o0 in the vicinity of the boundary of the growing circles?
(i) is it possible to derive (or at least guess) the speed ¢, =2VDk a priori,
i.e. without solving equation (2.2) explicitly?

It will appear that the answer to (i) provides a first step towards the answer of
(i).

So far we have exploited the radial symmetry of the fundamental solution
(2.3) by concentrating at circles, i.e. using |x|? as our basic variable. But let us
now choose some arbitrary unit vector { and look explicitly in the direction of
{ by taking for x a representation

x=a(t,0){+y, with y-{=0, (2.6)

where @ represents a ‘local’ one-dimensional coordinate and the scalar function
a has still to be determined. Upon substitution in (2.3) we find

1 kl(l*:fET) -4Dr 2.7
4nDt ¢ ¢ @7

which is bounded away from 0 and oo for 7—co provided we make sure that

u(t,x)=

0‘2(1,9)=4kD12(1 _ o + ﬂ]%&)

kt
for some bounded function . For the special choice
Int _ In4nD 6
2 — 2,y At +— 2.8)
o (1,6)=4kDr* (1~~~ ot th)
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we find that for t—o0

L.

u(t,x)—e b (2.9)

uniformly for y and 6§ in compact subsets (note that the 7-dependent constraint
on the range of § ‘dissolves’ in the limit 7—o00 ). The formula (2.8) implies that

2
a(t,0)=m(t)+0+0(-l—n;-£), t—00, (2.10)

m()=2VDki \/-%—1m~ \/{l‘mwp @11

So asymptotically for 7—co the solution behaves in the direction { like a plane

where

wave (no dependence on !) of the form exp(- %0) which travels

approximately with speed

m(t)=2VDk — \/—:T% (2.12)

Since { is arbitrary we conclude that the solution u ‘decomposes’ into plane
waves travelling in all directions with speed 2VDk and that these waves
describe the transition between the inside of the circles (§ — — o0) and the out-
side (6 — + o).

We could as well search for travelling plane wave solutions of the diffusion
equation (2.2) directly. Substituting

u(t,x)y=w(x-{—ct) (2.13)
we find for w the ordinary differential equation

Dw” +cw’'+kw =0 (2.14)
where a prime denotes the derivative with respect to the variable

0=x-{—ct. (2.15)
The solutions of (2.14) are of the form w(f)=Cexp(\d) with

_ —cxVc?—4Dk
A= (2.16)
2D
and C an arbitrary constant. The biological interpretation requires that w is

non-negative. Consequently we are forced to adopt a lower bound for the
speed c:

¢*=4Dk (2.17)
k
) -\/+
S0 ¢g=2VDk is the minimal wave speed (and e P is the corresponding

travelling plane wave solution) and we have found a characterization of the
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asymptotic speed ¢, which allows for its determination without demanding a
prohibitive effort

The following argument due to J.A.J. Metz makes the result intuitively
understandable. By manipulating the initial condition suitably we can produce
travelling waves in much the same way as one can create the illusion of steady
movement in an array of electric lights by turning them on and off appropri-
ately. Only one thing can spoil this game: if we try to make the speed too low
the inherent ‘infection’ mechanism of our excitable medium takes over. There-
fore this inherent infection speed is exactly the lowest possible wave speed!

2.2. Host -pathogen systems

Let S(z,x) denote the density of unaffected host plants. For the domain of x
(the habitat or field) we simply take R?. Let A(r,x,y) describe the infectivity at
x caused by the pathogen on a plant at y which was infected 7 time units ago,
then, by the law of mass action,

aS aS
=2 = == (- 1
o (t,x) S(I’X)bf'{ Py (t—m, y)A('r,x,y)dyd'r. (2.18)

If, in the infinite past, $ was S, (a given function) one obtains upon integrat-
ing (2.18) from — oo to 1:

u(t,x)= [ [g(u(t—1, )So()A(r,x,y)dydr (2.19)
OR’
where
u(t,x):= —-ln%’z’f)l (2.20)
and
gu)y=1—e™" 2.21)

Similarly the equation

u(t,x)= [ [g(u(t =7, y)So()A(r.x.p)dydT + f(1,x) (2.22)
oR’

corresponds to an initial value problem in which at t=0 S is given by S, and
the (given) function f describes the infectivity due to the pathogen already
present at ¢t =0.

Note that in this model the hosts don’t move but the pathogen does by non-
local interaction (for instance realized by spore dissemination), that an inpuba—
tion period (time delay between infection and spore production) is incor-
porated and that the diminution of unaffected hosts makes the problex.n non-
linear. These features create as many striking differences with the diffusion
equation of the foregoing section, but nevertheless the descripti‘on. of Section
1.2 reduces both to the same denominator. So let’s see whether similar conclu-
sions can be obtained.
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We first make two simplifying assumptions:
So(x)=Sy, a constant, (2.23)
A(rxy)=H@V(x—y)- (2.24)

The first means that initially the density of unaffected hosts is everywhere the
same, the second that the medium for the interaction is homogeneous and iso-
tropic (only the distance between x and y matters; so no prevailing wind) and
that the dispersal of infectious agents is so fast relative to the time scale of the
incubation and infectivity period that the processes of creation and transport
of infectious agents are effectively uncoupled.

If u(t,x)=w(x-{—ct) is to be a solution of (2.19), under the assumption
(2.23)-(2.24), the function w has to be a solution of the nonlinear convolution
equation on the line

w(@)=S, [ gwm)V@—n)dn, —o0<f<+ o, (2.25)
where
Vim):= [H@Vn—cndr (2.26)
0

with V the so-called marginal infectivity kernel defined by
V= [ V(Vit+0 )do. .27)
-0

In the analysis of (2.25) an important role is played by the characteristic equa-
tion
L.()=1 (2.28)

where

L(N:=So [ V(e ™Mdn=S, e H(rd [V(|x|)e " dx.(2.29)
0 R’

-
This characteristic equation is obtained by linearizing (2.25) around the con-
stant solution w=0 followed by substitution of an exponential function. Let us
assume that both H and V are nonnegative and integrable and that V
decreases faster than exponentially for |x|—oco. Then some straightforward
arguments show that the definition
co: =inf{¢>0]L,(\)=1 for some A>0} (2.30)

makes sense (and that 0<c, <o), provided

L(0) = S, [ H(r)dr [V(xdx>1. (2.31)
0 R’
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The condition (2.31) is the famous threshold condition of mathematical epi-
demiology which has the following interpretation: the number of secundary
infections produced by a single newly infected individual placed in a hypothet-
ical population (of density So) consisting permanently of susceptibles only
should exceed one. Clearly any epidemic will peter out immediately if this con-
dition is not satisfied! From now on we assume that (2.31) holds.

THEOREM 1. For any c=c, there exists a nonincreasing solution w of (2.25) with
w(—o0)=p and w(+o0)=0 where p is the unique positive root of the scalar
equation

p=vSog(p) where y:= jH('r)dffV()xl)dx.
0 R’

For c¢>c¢y, the basic idea of the proof in [20,70] is to use the information
obtained from L.(\) and the properties of g in the construction of two func-
tions ¢ and Y such that <<y, Tp=¢, TY<1, where T denotes the (mono-
tone!) integral operator that is associated with the right-hand side of (2.25).
For c¢=c( one can either follow the same procedure, but the construction is a
little bit more complicated, see [70], or one can resort to a limiting argument
which shows that the set of speeds is closed, see [13].

The characterization of the set of speeds is completed by the following com-
plementary result.

THEOREM 2. For 0<c<cq there are no nonconstant solutions of equation (2.25)
with 0<w(f)<p.

One can prove Theorem 2 in at least two different ways. In one approach one
has to construct a compactly supported function ¢ such that, for § positive and
sufficiently small, T(8¢)=8¢ and lim inf7")(§y)=p. Subsequently one shows

that for an arbitrary nontrivial solution w of (2.25) there exists a positive §
such that w=8y and the result w=p follows from the monotonicity of T; see
[70].

In the second approach one uses Tauberian theorems (notably Pitt’s form of
Wiener’s Tauberian Theorem ) to deduce that an arbitrary solution of (2.25)
with 0<<w(f)<p has to decrease exponentially to zero for § —+oo. Further-
more, by manipulating a bit with Laplace transforms, one can show that the
exponent has to be a real root of the characteristic equation (2.28) and conse-
quently the nonexistence of such roots implies the nonexistence of solutions of
(2.25) between 0 and p; see [24] for the details.

The advantage of the second approach is that the same method is suitable
for obtaining results about uniqueness modulo translation:

THEOREM 3. For fixed c=c, equation (2.25) admits modulo translation one and
only one nonconstant solution between 0 and p.



36 O. Diekmann

The case ¢>cg is dealt with in [24] but Lux [48] has extended the proof to the
case ¢ =cp; BARBOUR [5] has given a different uniqueness proof based on pro-
babilistic arguments.

In conclusion of this section we state two results which together define the
sense in which ¢, is the asymptotic speed of propagation of disturbances.

THEOREM 4. Let f be a nonnegative bounded continuous function from R , X R?
into R such that the projection of the support of f on R? is compact. Then

lim (sup{u(t,x)| |x|=ct})=0
1—o0
for any ¢>c,, where u is the solution of equation (2.22).

THEOREM 5. Let f be a nonnegative continuous function ther

lim inf(min {u(z,x)| |x|<ct})=p
11—
for any c€(0,cy), provided f is not identically zero.

The proofs are based on a comparison principle and the construction of suit-
able upper- and lower-solutions [21,67,68]. An understanding of the way in
which Volterra convolution equations generate dynamical systems [23] is very
helpful.

So, with the part of oo assigned to p, a dynamical picture emerges that is
identical to the one of the linear diffusion equation.

2.3. Into the field

As presented in Section 2.2 the results have hardly any appeal to researchers in
plant pathology. The functions H and V are introduced in the abstract and the
theorems are completely unreadable. In an attempt to bridge the communica-
tion gulf J.A.J. Metz asked F. van den Bosch, at that time a student in theoret-
ical biology at the University of Leiden, to learn both languages and act as an
interpreter. This is a far from easy job but several recent preprints witness that
the attempt was quite succesful [9,10]. In joint work with J.C. Zadoks of the
Laboratory for Phytopathology of the Agricultural University of Wageningen
they developed several mechanistic submodels for spore dispersal from which
V' can be derived, they introduced flexible yet parameter sparse kernels H that
fit published data on spore production well, they developed approximation for-
mulae and numerical procedures to calculate ¢, from the defining equations

A,
an

with a pocket calculator in negligible time, they expressed both the ‘input’
quantities Sy, H and V and the ‘output’ quantity ¢, in standard phytopatho-
logical terminology and, finally they showed that the model predictions match
up to simulation studies [72] and agree reasonably with the speed measured in
a field experiment. They built the connection between some parts of the

LM=1,

MN=0
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biological and the mathematical world by making biologically palpable what is
mathematically so easily introduced (‘Let H and V denote ...").

So far their work deals with the expansion of a connected area of infested
plants within a field ( a focus or hot-spot). But, as HEESTERBEEK {38] has
described and classified in detail, one can consider the spread of an infectious
disease in a crop at different geographical scales. One can concentrate on focus
expansion, on changes in the number and size of foci within one field or on a
large number of fields in different phases of disease development. In the first
two cases the temporal scale is the growing season but in the last case one may
have to pay attention to overwintering. This last case is particularly relevant in
view of so-called quarantine-diseases (pests which are accidentally introduced
in countries or continents in which they were unknown before). Although from
a mathematical point of view the phenomena are almost identical on all these
scales, it is a far from trivial modelling problem to make the available results
applicable to the various situations and to figure out what additional results
are needed. Work on these problems is in progress.

2.4. Some history and other things worth knowing

The subject of a wave-like transition from an unstable state to a stable one

seemns to be born in 1937 with the publication of two highly influential papers.
In his paper ‘The wave of advance of advantageous genes’ [30] FISHER

discusses the nonlinear diffusion equation on the line

B _
dr

with f(u)=ku(l—u) and he finds that travelling waves exist for all
c=co=2VDk. A little puzzled by the indeterminacy of velocity he examines
the behaviour of a finite aggregate of discrete particles, subject to random
scattering and increase in number, and concludes from this study that ¢y has
to be the ‘true’ speed. In a celebrated paper of the same year 1937 KoLmo-
GOROFF, PETROVSKY and P1sCOUNOFF [46] prove that the solution correspond-
ing to the special discontinuous initial condition

0 x<0
u(0,x) = 1 x=0

converges to the travelling wave w of minimal velocity ¢q in the sense that
u(t, x +m(t))—>w(x), uniformly in x, for r—o0 and for appropriate choice of
m(t), and that m(t)—cq. Already in 1948 KENDALL [43] observes that this
result cannot hold for all initial conditions, but that it is likely that for com-
pactly supported initial data the solution develops into two diverging travelling
waves of minimal velocity. Since that time several important contributions to
the solution of the convergence problem have been made by various authors,
culminating in a complete solution by M. BRaMsON [11] which, remarkably,
uses the Feyman-Kac integral formula in conjunction with sample path esti-
mates for Brownian motion as the basic technical device. No results about

’u
Da—x; +f(w)
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convergence to travelling waves in higher dimensional spatial domains seem to
be known.

But the speed-ambiguity which annoyed Fisher was fully resolved in 1975
when ARONSON and WEINBERGER [2,3] introduced the notion of the asymproric
speed of propagation of disturbances and showed that, even in higher space
dimension, this speed coincides with the minimal velocity of travelling plane
waves. The papers by Aronson and Weinberger mark the beginning of an
explosive increase in published papers on nonlinear reaction-diffusion equa-
tions with biological applications, see for instance FIFE [27,28], OkuBo [55]
and DIEKMANN and TEMME [26].

As the title of his paper indicates, Fisher was interested in the speed at
which an advantageous mutant gene would spread in a spatially distributed
population. In a similar spirit SKELLAM [63] investigated the regional spread of
oak trees in the post-glacial period and the dispersal of the muskrat after its
escape from ‘prison’ in Europe, and AMMERMAN and CAVALLI-SFORZA [1]
analysed the neolithic transition in Europe (the shift from hunting and gather-
ing to early farming as a new way of life). KENDALL [44] initiated the model-
ling of the spatial spread of epidemics (his work has been continued by
MOLLISON [52]). As a rather sinister example NOBLE [54] has treated the pro-
pagation of the Black Death in medieval Europe. A much studied wildlife
disease is rabies [4].

The model of Section 2.2 is a space-dependent analogue of the basic model
of KErMAck and McKENDRICK (which was introduced as early as 1927 [45];
also see [50]). It was developed and analysed independently by THIEME [65]
and DIekMANN [20] and later extended to vector-borne and other multi-type
diseases by RADCLIFFE and RaAss [60]. A remarkable feature of both the epi-
demic equation and the nonlinear diffusion equation with flu)=ku(l—u) is
that ¢ is determined by the linearization at the unstable state. This is true for
a large class of nonlinearities but not for all (in this connection one discrim-
inates between pulled waves, the ones we have met, and pushed waves which
are more strongly determined by the nonlinearity; see, for instance, ROTHE
{61}, HADELER and ROTHE [35]).

If in the genetics model heterozygotes are inferior one has rwo steady states
which are ‘seperated’ from one another by an unstable steady state. In this
case there exists usually a unique (modulo translation) wave travelling at an
exactly determined velocity. In order to bring about a transition from one
stable state to the other perturbations now have to be sufficiently large over a
sufficiently large domain (super-threshold, as it is called) but once this is so the
transition takes effectively place with the wave velocity, see FIFE and McLEOD
[29] and [27,28).

WEINBERGER [71] has introduced and analysed a discrete time equation
which is sufficiently general to cover both discrete and continuous spatial
domains and which allows for seasonal influences and spatial anisotropy (pre-
vailing winds!). As a consequence the speed may depend on the direction. Let
¢o(§) be the minimal speed of travelling plane waves in the direction { then
Weinberger shows that the (convex) set
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S = {xeR¥x-t<cq($) for all unit vectors $)

replaces the circles in the results that characterize the asymptotic speed of pro-
pagation. Many other results for this class of equations were obtained by Lul
in an interesting series of papers [48,49].

Aronson and Weinberger have achieved a major conceptual break-through
by introducing the notion of ‘asymptotic speed of propagation’. This notion
combines practical relevance with mathematical elegance. Analysis of a multi-
tude of models has by now made clear that it provides a robust link between
observed spatial expansion of many different substances and the behaviour of
solutions of mathematical equations. The characterization as the minimal wave
speed makes it computable and hence applicable.

It is not always easy to apply applied mathematics. The spirit of the papers
by Fisher and by Aronson and Weinberger is quite different and so is the jar-
gon. The style of the papers by Thieme and Diekmann puts off many poten-
tially interested people. We need chains of communicating people with over-
lapping knowledge and interests to let the stream of scientific information and
inspiration flow freely back and forth between scientists and mathematicians.
In Section 2.3 I briefly described such a chain and indicated its highly valuable
products.

The early papers (FISHER [30], SKELLAM [63]) are quite explicitly concerned
with natural phenomena. Next comes a period in which ‘applicability’ is still a
motivation, but nevertheless mathematical analysis is the principal thing. The
right concept is created and strong results are obtained. It requires additional
energy to come full circle and let the mathematical results bear upon the origi-
nal scientific questions. Most likely new questions arise in this ‘final’ phase and
the process repeats indefinitely (‘the march of science along a spiral staircase’).

3. MATHEMATICAL MODELS OF STRUCTURED POPULATIONS AND PERTURBED
DUAL SEMIGROUPS

3.1. The background

The first impulse to a general theory of physiologically structured population
models was given in 1967, a year which showed a remarkable outburst of inno-
vative papers [8,31,62]. But, perhaps due to the lack of a cut and dried
mathematical framework, the subsequent development was disappointing in
view of the very promising start. In the first half of 1983 a colloquium on the
Dynamics of Structured Populations was held at the Centre for Mathematics
and Computer Science attempting to revive the spirit of the pioneering papers
and, at the same time, to start building the required mathematical framework.
The colloquium served as a starting point for intense interdisciplinary interac-
tion of the core participants. The fruits of this interaction obtained so far have
been documented extensively elsewhere [S1]. Here I want to concentrate on
one particular mathematical aspect while refering to [51] for a general survey
and many concrete examples displaying various amounts of biological com-
plexity and realism.



40 O. Diekmann

3.2. Age-dependent population growth .

Let the individuals of a population be characterized by their age a. Let n(z,q)
denote the age distribution at time 1, Le.

[ n(t.)de = number of individuals with age between a; and a; at time .

The individuals age, may give birth or die. The first process is described by the

differential equation %= 1, the second by the age-specific per capita birth

rate B(a) and the third by the age-specific per capita death rate u(a). Since
n(t+ha+h)=n(t,a)—hwa)n(t,a)+O(h?)
we derive for n the balance law

on on
— = —— — pn 3.
0t da S

which we supplement with the boundary condition

n(,0) = 7,B(a)n (t, a)da (3.2)
0

to express that the influx at the boundary a =0 equals the total birth rate.
Finally we assume that at 1 =0 the age distribution equals a given function ¢:

n(0,a)=¢(a). 3.3

In order to minimize inessential (for the present purpose) technical and
notational detail we take p to be identically zero throughout this paper. To get
a feel for the problem we begin by taking B(a)=0 as well. In the absence of
births and deaths the solution of (3.1) - (3.3) is evidently

Ma—t) ,a=t
n(t,a,¢)= {0 a<t (3.4

as follows also directly from the interpretation.
A reasonable choice of population state space is L;(R ;). Putting

To(1)p = n(t,,¢) (3.5)

we obtain a strongly continuous semigroup of bounded linear operators on
L (R, ) with infinitesimal generator

App=—¢' ]
(3.6)

a
D(A0)= {$[¢(a)= [#/(a)da with ¢'€L, R ; )}
0
(recalling that one out of several equivalent definitions of an absolutely con-

tinuous function is ‘a function which is, locally, the integral of an L,-function’,
we can also write D(49)={¢|¢ is absolutely continuous, ¢(0)=0 and ¢’ is
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integrable over R, }; in the following we abbreviate ‘absolutely continuous’ to
AC).

The standard solution procedure in case of non-zero birth rate is the follow-
ing. First consider the birth rate p
® 1
b(t) = j Bleyn(t,a)da (3.7)

0

as known. Then /
—1) ,a=
n(t.a.9) = {W ) (38)

b(t—a) ,a<t

— a

where, although we haven’t expressed this in our notation, b depends on ¢.
Substituting (3.8) into (3.2) we obtain the linear renewal (i.e. Volterra convolu-
tion) equation

b(t)= f B(a)b(t —a)da + f (1) (3.9)
0
with
f@) = [Ble@ypla—rt)da = [ Bla+typ(e)da. (3.10)
1 0

Assume BeL ,(R,). Standard contraction mapping arguments imply that
(3.9) has a unique solution represented by

b= i;gmf G.11)

where the star denotes the convolution product, BO'*f: =, B =8,
Brx:=B""D"xB n=2. Substituting (3.11) into (3.8) we finally arrive at a series
expansion for the age distribution n, which has the following interpretation.
Let’s call those individuals which were present at time z =0 the zero’th genera-
tion. Then f describes the offspring of the zero’th generation and the
corresponding term in the expansion of n is, for this reason, called the first
generation. Similarly the n-th term describes the n-th biological generation
and the expansion is called the generation expansion.
The semigroup

Tt = n(t,,$) (3.12)
is generated by
A¢ = —¢ . . (3.13)
D(4)={¢|¢(a)= [ Bla)i(@)da+ [¢'(a)da with ¢'eL (R+)}
0 0
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(or, equivalently, D(4)={¢|¢ is AC, ¢0)= f B(a)p(a)da and ¢’ is integrable

over R, }).

A striking point is that all information about the birth rate enters in the
domain of A and that the action of 4 is independent of B. This is highly
unpleasant for several reasons:

(i) within the present functional analytic framework there is no analogue of
the renewal equation (3.9) which we can solve iteratively; a puzzling and
somewhat irritating phenomenon.

(i) if we deal with nonlinear birthrates (describing density dependence) we
don’t have at our disposal a variation-of-constants formula. The lack of
this important tool forms an obstacle for the development of the local sta-
bility and bifurcation theory and as a consequence ad hoc approaches
dominate the field [69,59,19].

So, once ‘again, is an abstract approach beneficial? It looks as though we made
life more complicated, instead of simpler, by introducing a semigroup.

A little reflection reveals that the difficulty is due to the fact that all
newborns have (by definition) one and the same age a =0. The range of the
birth operator is spanned by the (Dirac) measure concentrated at a =0 which
is not an element of L (R, ). So the ‘perturbation’ of the generator maps out
of the state space into some bigger space but, as we have seen, solving the
differential equation we come back into the smaller space. An analogous
phenomenon occurs with delay equations [36,22].

Should we enlarge the state space and let our age distributions live in the
space of regular Borel measures? This is a natural and sensible action (in fact
one can argue right from the start that this is the appropriate state space) but
we have to pay a technical price: the semigroup is no longer strongly continu-
ous (indeed, translation of a concentrated measure is not continuous).

In Section 3.4 it is shown that we need not choose the least of two evils but
that, instead, we can make great play with the good things of two spaces nei-
ther of which is ideal by itself. It appears that duality provides us with a sys-
tematic procedure to create the appropriate ‘bigger’ space and that a general
theory can be built which encompasses both age-dependent population models
and delay equations. The key Section 3.4 is essentially a summary of the pre-
print [16] by CLEMENT, DIEKMANN, GYLLENBERG, HEUMANS and THIEME.

3.3. Dual semigroups
Let {T(1)} be a strongly continuous semigroup of bounded linear operators on
a Banach space X generated by A. The adjoint operators 7" (z) form a semi-
group on the dual space X™. {7~ (t)} is weak * continuous but need not be
strongly contmuous if we equlp X" with the norm topology (unless X is
reﬂexwe) A°, the adjoint of 4, is the weak * generator of {T"()}. Note that
A" need not be densely defined.

In their classic treatise [42] HiLLE and PHILLIPS showed that the dialogue of
a space and a semigroup demands a duality theory which is made to measure.
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We need a special star, called sun and represented by the symbol ©. Let X©
denote the maximal invariant subspace on which {7"(¢)} is strongly continu-
ous. Then

X©={¢" EX'IllilrglIIT'(t)J —¢"11=0}, (3.14)

X© is norm-closed and D(47)=X®. Let {T®()} denote the strongly continu-
ous semigroup on X© which is obtained by restriction of {T"(z)} and let 4©
denote its generator. Then A4 © is the part of A” in X©, i.e. the largest restric-
tion of 4~ with both domain and range in X©.

On X©7, the dual space of X®, we obtain a weak * continuous semigroup
{T®" ()} with weak * generator 4 ©". Let

XOO = (9" X" imlI T ()% —4°711=0}. (3.15)

It follows rather easily that X can be embedded into X©" and henceforth we
identify X and its embedding. Then X becomes a subspace of X ©©.

DEFINITION. X is called ©-reflexive with respect to A iff X=X ©0,

It is known that X is O-reflexive with respect to 4 iff (\/ —4)! is X©-weakly
compact. Moreover, X is O-reflexive with respect to 4 iff X© is O-reflexive
with respect to 4 ©.

3.4. Perturbation theory for dual semigroups

Let {Ty(r)} be a strongly continuous semigroup on X generated by 4, and
assume that X is O-reflexive with respect to 4. Let B:X—X©" be a bounded
linear operator. The variation-of-constants equation

T(t)p=To(t}p+ [T§" (t —m)BT(r)pdr (3.16)
0

can be shown to make sense and to admit a unique solution {7(¢)} (which can
be represented by a ‘generation’ series). Here the integral is a weak * integral
which in principle takes values in X" but in fact takes values in the closed
subspace X©© = X. By duality and restriction we obtain semigroups {7 (¢)},
(T® (1)} and {T®"(z)} on X",X® and X©" respectively, since it can be shown
that the spaces of strong continuity do nor depend on B. Similarly the domains
of the weak * generators on the ‘big’ spaces are independent of B. The follow-
ing theorem summarizes part of the results.

THEOREM. The operator A$=AP ¢+Bod with D(A)={9eD(AF")|
A®" ¢+BoeX) is the generator of a strongly continuous semigroup {T(1)} on X
and the variation-of-constants formula (3.16) holds.
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The symmetry of the framework is apparent from the diagram

X — > X’

XO‘_*________ X@
When X is not O-reflexive with respect to Ay this symmetry is disturbed.
Nevertheless similar results hold. A canonical embedding of X®© into X**
seems to play a leading part, but it is not yet precisely clear how the most
elegant and efficient argumentation proceeds, so we refrain from further dis-
cussion here.

3.5. Age-dependent population dynamics revisited
If we consider age-distributions over the non-compact domain R, we don’t
get O-reflexivity. However, if 8 has compact support (or, in other words, if
very old individuals don’t produce offspring) we may limit our bookkeeping of
individuals without losing relevant information. For the purpose of the present
exposition, we therefore replace L;(R,) by L,(0,anm.) for some constant
amax- SO0 X=L (0,8 may).

Let Agp=—¢" with D(4y)={¢|¢ is AC and $(0)=0} be, as before, the gen-
erator of the semigroup

da—1t) ,a=t
(To(1)p)a) = {0 <t

On the dual space X =L ,(0,a,) we have the semigroup
Ya+t) ,a+t1<apg,

To(t =

( 0( )‘P)(a) 0 7a+t>amax
with weak * generator
Aoy=y/
D(A4¢)={¥[¥ has a Lipschitz continuous representative which is zero at a =a,, }.
Clearly X© =Co(0,amwx)={¥|¥ has a continuous representative which is zero
at a=ap,, ) and X© =M][0,an,,), the space of all complex regular Borel
measures on [0,a ). It is well-known [14] that the subspace of M[0,am,,) on
which translation is continuous, i.e. X®©, is exactly the closed subspace of all
absolutely continuous measures. The mapping which associates with any ¢ in
X the measure p in X©° defined by mw)= f M(a@)da describes the canonical

w

identification of X and X©©.
Let B:X—X" be defined by

B¢ = fxﬂ(a)ﬂa)da”o‘ = <B,p>8
0
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where § is the (Dirac) measure concentrated at a =0. Then the results of Sec-
tion 3.4 apply and we conclude that the part of AP +B in X generates a
semigroup T'(¢) which satisfies the variation-of-constants equation

T(1)p = To(t)p+ j T¢™ (1 —7)BT(r)pdr. (3.17)
0

Since B has one-dimensional range we can go a little further. Define

b(t)=<pP,T(t)p> then, applying the functional B to (3.17), we find after a lit-
tle calculation that b has to satisfy the scalar equation

b(t) = ft)+ [B(t —mb(r)dr (3.18)
0

where f(1):=<B,To(1)¢>= j;) e B(e)i{a—1t)da. Thus we recover the renewal
equation (3.9).

If, conversely, b is a solution of (3.18) with f of the form f(z)=<B,T,(t)p>
for some ¢€X then T(t)¢ is obtained by a simple substitution into the now
explicit expression (3.17):

T@t)p = To(t)p+ f TS (1 —7)8b(r)dr (3.19)
0

Thus we obtain a reformulation of (3.8).

We conclude that the abstract framework of Sections 3.3 and 3.4 is rich
enough for the (re)formulation of the (quasi-) explicit formulas of the direct
approach via the renewal equation.

Now we can also ease those attentive readers who worried about the fact
that the epidemic model of Section 2.2 was formulated as an integral equation
(notably with respect to the time variable) and not as a (abstract) differential
equation. When we think of ‘age’ as ‘time elapsed since infection’ and adopt a
nonlinear ‘birth = infection’ condition one can make the connection between
the nonlinear renewal equation via the variation-of-constants formula (3.17)
exactly as in the present linear case.

3.6. Physiologically structured population models: a challenge for the future

The biological motivation for studying physiologically structured population
models is described at length in the lecture notes [51] and the survey paper
[64]. The mathematical form taken by these models is:

on

ot

v velocitysg, = source

+ divergence (velocity n) = sources — sinks, x€%,

where the individual ‘velocity’ % and the sources and sinks are specified

according to the specific situation at hand. Here » denotes the inward normal
to 92, the boundary of the individual state space 2, and 32, is the part of 3%
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at which »- velocity >0, i.e. characteristics enter {. The solution concept is
based on integration along characteristics.

In a recent survey on Infinite Dimensional Dynamics [37] J.K. HALE writes:

‘For the successful development and application of dynamical sys-
tems in infinite dimensions, we need intensive interaction between
two special groups of researchers. The first group consists of
mathematicians who are well trained in dynamical systems and
know both the analytic and the geometric theory of differential
equations in finite dimensions. They should also know well the
classical and modern theory of partial differential and functional
differential equations and have a strong background in
applications-especially physics and engineering. The other group of
researchers should be primarily concerned with applications, but
should be well trained in ordinary and partial differential equa-
tions. It does not take much reflection to see that there are very
few people with these qualifications. More resources need to be
allocated for training young people to carry out this program’.

Then Hale goes on to describe functional differential equations and parabolic
systems as special cases in which the type of interaction he has in mind has led
to considerable success (and to make some remarks about hyperbolic systems
and chaotic dynamics). It seems quite conceivable that the equations of physio-
logically structured population dynamics will be at home in a similar survey
written many years from now. But whether this will happen or not, only time
will tell.
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